

Robot Programming
with the WPI
Robotics Library
Worcester Polytechnic Institute Robotics Resource Center

Brad Miller
9/15/2008

Contents
Getting Started .. 5

What is the WPI Robotics Library ... 6

A simple robot program .. 8

Using objects ... 9

Creating object instances .. 10

Creating a Robot Program .. 11

Pointers and addresses ... 14

RobotBase class .. 15

SimpleRobot class ... 16

IterativeRobot class .. 17

Watchdog timer class .. 18

Sensors .. 20

Types of supported sensors .. 20

Accelerometer... 21

Gyro ... 22

Using the Gyro class .. 22

Setting the gyro sensitivity .. 22

HiTechnicCompass .. 23

Ultrasonic rangefinder .. 24

Encoders ... Error! Bookmark not defined.

Background information .. Error! Bookmark not defined.

Encoders .. 25

Geartooth Sensor .. 26

Quadrature Encoders .. 27

Background Information ... 27

Counter ... 29

Analog Inputs .. 30

Digital Inputs ... 31

Digital Outputs .. 32

Controlling Motors .. 33

PWM ... 34

Victor ... 35

Jaguar .. 36

Servo ... 37

RobotDrive .. 38

Programmed Operation ... Error! Bookmark not defined.

Teleoperation ... Error! Bookmark not defined.

Using Pneumatics ... Error! Bookmark not defined.

Compressor ... 40

Example ... 40

Solenoid .. 41

Concurrency .. 42

Synchronized and Critical Regions .. 43

System Architecture .. 45

Digital I/O Subsystem .. 46

Analog to Digital Converter Subsystem .. 47

Oversample and Average Engine .. 47

Digital Sources ... 48

Digital Filter ... 48

Analog Triggers ... 49

Average Rejection Filter .. 49

Counters Subsystem ... 50

Getting Feedback from the Drivers Station .. 51

Joysticks .. 52

Driver station analog inputs .. 53

Driver station digital inputs... 54

Driver station digital outputs .. 55

Advanced Programming Topics .. 56

Using Subversion with Workbench ... 57

Installing the Subclipse client into Workbench ... 57

Getting the WPILib Source Code ... 61

Importing the WPI Robotics Library into your workspace .. 61

Using the WPI Robotics Library source code in your projects .. 63

Replacing WPI Robotics Library parts ... 66

Interrupts .. 67

Creating your own speed controllers .. 68

PID Programming .. 69

Using the serial port .. 70

Creating your own robot type.. Error! Bookmark not defined.

Relays .. 71

Analog Triggers ... 72

Customizing analog sampling.. 73

Using I2C ... 74

Using DMA for data analysis ... 75

Using WindRiver WorkBench .. 76

Setting up the environment .. 77

Creating a robot project .. 81

Building your project ... 83

Downloading the project to the cRIO ... 84

Debugging your robot program .. 85

What can you do with the debugger .. 85

Creating a Remote System in Workbench ... Error! Bookmark not defined.

Creating a Debug Configuration for your project Error! Bookmark not defined.

C++ Tips ... 86

Creating an application in WorkBench ... 87

Using C with the WPI Robotics Library .. 88

Contributing to the WPI Robotics Library ... 89

Glossary ... 90

Getting Started What is the WPI Robotics Library

15 September 2008 5

Getting Started

Getting Started What is the WPI Robotics Library

15 September 2008 6

What is the WPI Robotics Library
The WPI Robotics library is a set of C++ classes that interfaces to the hardware in the FRC

control system and your robot. There are classes to handle sensors, motors, the driver

station, and a number of other utility functions like timing and field management.

The library is designed to:

 Deal with all the low level interfacing to these components so you can concentrate on

solving this year’s “robot problem”. This is a philosophical decision to let you focus

on the higher level design of your robot rather than deal with the details of the

processor and the operating system.

 Understand everything at all levels by making the full source code of the library

available. You can study (and modify) the algorithms used by the gyro class for

oversampling and integration of the input signal or just ask the class for the current

robot heading. You can work at any level.

First, something about our new environment. We have about 500x more memory and

probably 100x more processor speed over the PIC that we're used to using. The past years

high speed sensor-interrupt logic that required precise coding, hand optimization and lots of

bugs has been replaced with dedicated hardware (FPGA). When the library wants the

number of ticks on a 1000 pulse/revolution optical encoder it just asks the FPGA for the

value. Another example is A/D sampling that used to be done with tight loops waiting for

the conversions to finish. Now sampling across 16 channels is done in hardware.

We chose C++ as a language because we felt it represents a better level of abstraction for

robot programs. C++ (when used properly) also encourages a level of software reuse that is

not as easy or obvious in C. At all levels in the library, we have attempted to design it for

maximum extensibility.

There are classes that support all the sensors, speed controllers, drivers station, etc. that

will be in the kit of parts. In addition most of the commonly used sensors that we could find

that are not traditionally in the kit are also supported, like ultrasonic rangefinders. Another

example are several robot classes that provide starting points for teams to implement their

own robot code. These classes have methods that are called as the program transitions

through the various phases of the match. One class looks like the old easyC/WPILib model

with Autonomous and OperatorControl functions that get filled in and called at the right

time. Another is closer to the old IFI default where user supplied methods are called

continuously, but with much finer control. And the base class for all of these is available for

teams wanting to implement their own versions.

Even with the class library, we anticipate that teams will have custom hardware or other

devices that we haven't considered. For them we have implemented a generalized set of

hardware and software to make this easy. For example there are general purpose counters

than count any input either in the up direction, down direction, or both (with two inputs).

Getting Started What is the WPI Robotics Library

15 September 2008 7

They can measure the number of pulses, the width of the pulses and number of other

parameters. The counters can also count the number of times an analog signal reaches

inside or goes outside of a set of voltage limits. And all of this without requiring any of that

high speed interrupt processing that's been so troublesome in the past. And this is just the

counters. There are many more generalized features implemented in the hardware and

software.

We also have interrupt processing available where interrupts are routed to functions in your

code. They are dispatched at task level and not as kernel interrupt handlers. This is to help

reduce many of the real-time bugs that have been at the root of so many issues in our

programs in the past. We believe this works because of the extensive FPGA hardware

support.

We have chosen to not use the C++ exception handling mechanism, although it is available

to teams for their programs. Our reasoning has been that uncaught exceptions will unwind

the entire call stack and cause the whole robot program to quit. That didn't seem like a

good idea in a finals match in the Championship when some bad value causes the entire

robot to stop.

The objects that represent each of the sensors are dynamically allocated. We have no way

of knowing how many encoders, motors, or other things a team will put on a robot. For the

hardware an internal reservation system is used so that people don't accidentally reuse the

same ports for different purposes (although there is a way around it if that was what you

meant to do).

I can't say that our library represents the only "right" way to implement FRC robot

programs. There are a lot of smart people on teams with lots of experience doing robot

programming. We welcome their input; in fact we expect their input to help make this

better as a community effort. To this end all of the source code for the library will be

published on a server. We are in the process of setting up a mechanism where teams can

contribute back to the library. And we are hoping to set up a repository for teams to share

their own work. This is too big for a few people to have exclusive control, we want this

software to be developed as a true open source project like Linux or Apache.

Getting Started A simple robot program

15 September 2008 8

A simple robot program
Creating a robot program has been designed to be as simple as possible while still allowing a lot of

flexibility. Here’s an example of a template that represents the simplest robot program you can create.

#include "WPILib.h"

class RobotDemo : public SimpleRobot

{

 RobotDemo(void)

 {

 // put initialization code here

 }

 void Autonomous(void)

 {

 // put autonomous code here

 }

 void OperatorControl(void)

 {

 // put operator control code here

 }

};

START_ROBOT_CLASS(RobotDemo);

There are several templates that can be used as starting points for writing robot programs. This one,

SimpleRobot is probably the easiest to use. Simply add code for initializing sensors and anything else you

need in the constructor, code for your autonomous program in the Autonomous function, and the code

for your operator control part of the program in OperatorControl.

SimpleRobot is actually the name of a C++ class or object that is used as the base of this robot program

called RobotDemo. To use it you create a subclass which is another name for your object that is based

on the SimpleRobot class. By making a subclass, the new class, RobotDemo, inherits all the predefined

behavior and code that is built into SimpleRobot.

Getting Started Using objects

15 September 2008 9

Using objects
In the WPI Robotics Library all sensors, motors, driver station elements, and more are all objects. For the

most part, objects are the physical things on your robot. Objects include the code and the data that

makes the thing operate. Let’s look at a Gyro. There are a bunch of operations, or methods, you can

perform on a gyro:

 Create the gyro object – this sets up the gyro and causes it to initialize itself

 Get the current heading, or angle, from the gyro

 Set the type of the gyro, its Sensitivity

 Reset the current heading to zero

 Delete the gyro object when you’re done using it

Creating a gyro object is done like this:

Gyro robotHeadingGyro(1);

robotHeadingGyro is a variable that holds the Gyro object that represents a gyro module connected

to analog port 1. That’s all you have to do to make an instance of a Gyro object.

Note: by the way, an instance of an object is the chunk of memory that represents

the data unique to that object. When you create an object that memory is

allocated and when the object is deleted, that memory is deallocated.

To get the current heading from the gyro, you simply call the GetAngle method on the gyro object.

Calling the method is really just calling a function that works on the data specific to that gyro instance.

float heading = robotHeadingGyro.GetAngle();

The variable heading will be set to the current heading of the gyro connected to analog channel 1.

Getting Started Using objects

15 September 2008 10

Creating object instances

There are several ways of creating object instances used throughout the WPI Robotics Library and all the

examples. Depending on how the object is created there are differences in how the object is referenced

and deleted. Here are the rules:

Method Creating object Using the object When the object is
deleted

Local variable
declared inside a
block or function

Victor leftMotor(3); leftMotor.Set(1.0); Object is implicitly
deallocated when the
enclosing block is exited

Global declared
outside of any
enclosing blocks
or functions; or a
static variable

Victor leftMotor(3); leftMotor.Set(1.0); Object is not
deallocated until the
program exits

Pointer to object

Victor *leftMotor = new Victor(3); leftMotor->Set(1.0); Object must be
explicitly deallocated
using the C++ delete
operator.

How do you decide what to use?

Creating a Robot Program Using objects

15 September 2008 11

Creating a Robot Program
Now consider a very simple robot program that has these characteristics:

Autonomous period Drives in a square pattern by driving half speed for 2 seconds to make a side
then turns 90 degrees. This is repeated 4 times.

Operator Control
period

Uses two joysticks to provide tank steering for the robot.

The robot specifications are:

Left drive motor PWM port 1
Right drive motor PWM port 2
Joystick driver station joystick port 1

Starting with the template for a simple robot program we have:

#include "WPILib.h"

class RobotDemo : public SimpleRobot

{

 RobotDemo(void)

 {

 // put initialization code here

 }

 void Autonomous(void)

 {

 // put autonomous code here

 }

 void OperatorControl(void)

 {

 // put operator control code here

 }

};

START_ROBOT_CLASS(RobotDemo);

Now add objects to represent the motors and joystick.

The two objects – the robot drive with motors in ports 1 and 2, and joystick is declared using the

following code:

RobotDrive drive(1, 2);

Joystick stick(1);

Creating a Robot Program Using objects

15 September 2008 12

For the example and to make the program easier to understand, we’ll disable the watchdog timer. This

is a feature in the WPI Robotics Library that helps ensure that your robot doesn’t run off out of control if

the program malfunctions.

RobotDemo(void)

{

 GetWatchdog().SetEnabled(false);

}

Now the autonomous part of the program can be constructed that drives in a square pattern:

void Autonomous(void)

{

 for (int i = 0; i < 4; i++)

 {

 drivetrain.Drive(0.5, 0.0); // drive 50% forward with 0% turn

 Wait(2000); // wait 2000 ms (2 seconds)

 drivetrain.Drive(0.0, 0.75); // drive 0% forward and 75% turn

 }

 Drivetrain.Drive(0.0, 0.0); // drive 0% forward, 0 turn (stop)

}

Now look at the operator control part of the program:

void OperatorControl(void)

{

 while (1) // loop forever

 {

 drivetrain.Tank(&stick1, &stick2); // tank drive with the joystick

 }

}

Putting it all together we get this pretty short program that accomplishes some autonomous task and

provides operator control tank steering:

Creating a Robot Program Using objects

15 September 2008 13

#include "WPILib.h"

RobotDrive drivetrain(1, 2);

Joystick stick(1);

class RobotDemo : public SimpleRobot

{

 RobotDemo(void)

 {

 GetWatchdog().SetEnabled(false);

 }

 void Autonomous(void)

 {

 for (int i = 0; i < 4; i++)

 {

 drivetrain.Drive(0.5, 0.0); // drive 50% forward, 0% turn

 Wait(2000); // wait 2000 ms (2 seconds)

 drivetrain.Drive(0.0, 0.75); // drive 0% forward and 75% turn

 Wait(750); // turn for almost a second

 }

 drivetrain.Drive(0.0, 0.0); // stop the robot

 }

 void OperatorControl(void)

 {

 while (1) // loop forever

 {

 drivetrain.Tank(&stick1, &stick2); // tank drive with the joystick

 }

 }

};

START_ROBOT_CLASS(RobotDemo);

Although this program will work perfectly with the robot as described, there were some details that

were skipped:

 In the example drivetrain and stick are global variables. In computer science classes you

would be discouraged from doing that. In the next section pointers will be introduced that make

the code more “correct” and maintainable.

 The tank steering method drivetrain.tank(&stick) had this &stick construct in it. The

ampersand (&) represents the address of a Joystick object. The next section will describe how

pointers work and what that ampersand really means.

 The drivetrain.Drive() method takes two parameters, a speed and a turn direction. See

the documentation about the RobotDrive object for details on how that speed and direction

really work.

Creating a Robot Program Pointers and addresses

15 September 2008 14

Pointers and addresses

Creating a Robot Program Built-in Robot classes

15 September 2008 15

Built-in Robot classes
There are several built-in robot classes that will help you quickly create a robot program. These are:

Table 1: Built-in robot base classes to create your own robot program. Subclass one of these depending on your

requirements and preferences.

Class name Description

SimpleRobot This template is the easiest to use and is designed for writing a straight-line
autonomous routine without complex state machines.
Pros:

 Only three places to put your code: the constructor for initialization, the
Autonomous method for autonomous code and the OperatorControl
method for teleop code.

 Sequential robot programs are trivial to write, just code each step one
after another.

 No state machines required for multi-step operations, the program can
simply do each step sequentially

Cons:

 Automatic switching between Autonomous and Teleop code segments is
not easy and may require rebooting the controller.

 The Autonomous method will not quit running until it exits, so it will
continue to run through the TeleOp period unless it finishes by the end of
the Autonomous period.

IterativeRobot This template gives additional flexibility in the code for responding to various field
state changes in exchange for additional complexity in the program design. It is
based on a set of methods that are repeatedly called based on the current state of
the field. The intent is that each method is called; it does some processing, and
then returns. That way, if the field state changes, a different method can be called
as soon as the change happens.
Pros:

 Can have very fine-grain control of field state changes, especially if
practicing and retesting the same state over and over.

Cons:

 More difficult to write simple complex tasks. It requires state variables to
remember what the robot is doing from one call the next.

RobotBase The base class for the above classes. This provides all the basic functions for field
control, the user watchdog timer, and robot status. This class should be extended
to have the required specific behavior.

Creating a Robot Program SimpleRobot class

15 September 2008 16

SimpleRobot class
The SimpleRobot class is designed to be the base class for a robot program with straightforward

transitions from Autonomous to Operator Control periods. There are three methods that are usually

filled in to complete a SimpleRobot program.

Table 2: SimpleRobot class methods that are called as the match moves through each phase.

Method What it does

the Constructor
(method with the
same name as the
robot class)

Put all the code in the constructor to initialize sensors and any program variables
that you have. This code runs as soon as the robot is turned on, but before it is
enabled. When the constructor exits, the program waits until the robot is
enabled.

Autonomous() All the code that should run during the autonomous period of the game goes in
the Autonomous method. The code is allowed to run to completion and will not
be stopped at the end of the autonomous period. If the code has an infinite loop,
it will never stop running until the entire match ends. When the method exits, the
program will wait until the start of the operator control period.

OperatorControl() Put code in the OperatorControl method that should run during the operator
control part of the match. This method will be called after the Autonomous()
method has exited and the field has switched to the operator control part of the
match. If your program exits from the OperatorControl() method, it will not
resume until the robot is reset.

Creating a Robot Program IterativeRobot class

15 September 2008 17

IterativeRobot class
The IterativeRobot class divides your program up into methods that are repeatedly called at various

times as the robot program executes. For example, the AutonomousContinuous() method is called

continuously while the robot is in the autonomous mode of operation. When the robot changes state to

operator control, then the TeleopInit() first, then the TeleopContinuous() method is called continuously.

WindRiver Workbench has a built in sample robot program based on the Iterative Robot base class. If

you would like to use it, follow the instructions from the previous section, except select “Iterative Robot

Main Program”. The project will be created in your workspace.

The methods that the user fills in when creating a robot based on the IterativeRobot base class are:

Table 3: IterativeRobot class methods that are called as the match proceeds through each phase.

Method name Description

RobotInit Called when the robot is first turned on. This is a substitute for using the
constructor in the class for consistency. This method is only called once.

DisabledInit Called when the robot is first disabled

AutonomousInit Called when the robot enters the autonomous period for the first time. This
is called on a transition from any other state.

TeleopInit Called when the robot enters the teleop period for the first time. This is
called on a transition from any other state.

DisabledPeriodic Called periodically during the disabled time based on a periodic timer for the
class.

AutonomousPeriodic Called periodically during the autonomous part of the match based on a
periodic timer for the class.

TeleopPeriodic Called periodically during the teleoperation part of the match based on a
periodic timer for the class.

DisabledContinuous Called continuously while the robot is disabled. Each time the program
returns from this function, it is immediately called again provided that the
state hasn’t changed.

AutonomousContinuous Called continuously while the in the autonomous part of the match. Each
time the program returns from this function, it is immediately called again
provided that the state hasn’t changed.

TeleopContinuous Called continuously while in the teleop part of the match. Each time the
program returns from this function, it is immediately called again provided
that the state hasn’t changed.

The three Init methods are called only once when that state is entered for the first time. The Continuous

methods are called repeatedly while in that state, after calling the appropriate Init method. The Periodic

methods are called periodically while in a given state where the period can be set using the SetPeriod

method in the IterativeRobot class. The periodic methods are intended for time based algorithms like

PID control. Any of the provided methods will be called at the appropriate time so if there is a

TeleopPeriodic and TeleopContinous, they will both be called.

Creating a Robot Program RobotBase class

15 September 2008 18

RobotBase class
The RobotBase class is the subclass for the SimpleRobot and IterativeRobot classes. It is intended that if

you decide to create your own type or robot class it will be based on RobotBase. RobotBase has all the

methods to determine the field state, set up the watchdog timer, communications, and other

housekeeping functions.

To create your own base class, create a subclass of RobotBase and implement (at least) the

StartCompetition() method.

For example, the SimpleRobot class definition looks (approximately) like this:

class SimpleRobot: public RobotBase

{

public:

 SimpleRobot(void);

 virtual void Autonomous(void);

 virtual void OperatorControl(void);

 virtual void RobotMain(void);

 void StartCompetition(void);

private:

 bool m_robotMainOverridden;

};

It overrides the StartCompetition() method that controls the running of the other methods and it

adds the Autonomous(), OperatorControl(), and RobotMain() methods. The StartCompetition

method looks (approximately) like this:

void SimpleRobot::StartCompetition(void)

{

 while (IsDisabled()) Wait(10); // wait for match to start

 if (IsAutonomous()) // if starts in autonomous

 {

 Autonomous(); // run user supplied Autonomous code

 }

 while (IsAutonomous()) Wait(10); // wait until end of autonomous period

 while (IsDisabled()) Wait(10); // make sure robot is enabled

 OperatorControl(); // start user supplied OperatorControl

}

It uses the IsDisabled() and IsAutonomous() methods in RobotBase to determine the field state

and calls the correct methods as the match is sequenced.

Similarly the IterativeRobot class calls a different set of methods as the match progresses.

Creating a Robot Program Watchdog timer class

15 September 2008 19

Watchdog timer class
The Watchdog timer class helps to ensure that the robot will stop operating if the program does

something unexpected or crashes. A watchdog object is created inside the RobotBase class (the base

class for all the robot program templates). Once created, the program is responsible for “feeding” the

watchdog periodically by calling the Feed() method on the Watchdog. Failure to feed the Watchdog

results in all the motors stopping on the robot.

The default expiration time for the Watchdog is 500ms. Programs can override the default expiration

time by calling the SetExpiration(expiration-time-in-ms) method on the Watchdog.

Use of the Watchdog timer is recommended for safety, but can be disabled. For example, during the

autonomous period of a match the robot needs to drive for drive for 2 seconds then make a turn. The

easiest way to do this is to start the robot driving, and then use the Wait function for 2 seconds. During

the 2 second period when the robot is in the Wait function, there is no opportunity to feed the

Watchdog. In this case you could disable the Watchdog at the start of the Autonomous() method and re-

enable it at the end.

void Autonomous(void)

{

 GetWatchdog().SetEnabled(false); // disable the watchdog timer

 Drivetrain.Drive(0.75, 0.0); // drive straight at 75% power

 Wait(2000); // wait for 2 seconds

 .

 .

 .

 GetWatchdog().SetEnabled(true); // reenable the watchdog timer

}

You can get the address of the Watchdog timer object from the RobotBase class from any of the

methods inside one of the robot program template objects.

Sensors Watchdog timer class

15 September 2008 20

Sensors
The WPI Robotics Library includes built in support for all the sensors that are supplied in the FRC kit of

parts as well as many other commonly used sensors available to FIRST teams through industrial and

hobby robotics outlets.

Types of supported sensors

The library natively supports sensors of a number of categories shown below.

Category Supported sensors

Wheel/motor position
measurement

Geartooth sensors, encoders, analog encoders, and potentiometers

Robot orientation Compass, gyro, accelerometer, ultrasonic rangefinder

Generic pulse output Counters

In the past high speed counting of pulses of encoders or accurate timing of ultrasonic rangefinders was

implemented in complex real-time software and caused a number of problems as system complexity

increased. On the cRIO, the FPGA implements all the high speed measurements through dedicated

hardware ensuring accurate measurements no matter how many sensors and motors are added to the

robot.

In addition there are many features in the WPI Robotics Library that make it easy to implement many

other types of sensors not directly supported with classes. For example general purpose counters can

measure period and count of any device generating pulses for its output. Another example is a

generalized interrupt facility to catch high speed events without polling and potentially missing them.

These features are described in the Synchronized and Critical Regions section of this manual.

Sensors Accelerometer

15 September 2008 21

Accelerometer
The accelerometer typically provided in the kit of parts is a two-axis accelerometer. It can provide

acceleration data in the X and Y axis relative to the circuit board. In the WPI Robotics Library you

treat it as two devices, one for the X axis and the other for the Y axis. This is to get better

performance if your application only needs to use one axis. The accelerometer can be used as a tilt

sensor – actually measuring the acceleration of gravity. In this case, turning the device on the side

would indicate 1000 milliGs or one G.

Figure 1: FRC supplied 2 axis accelerometer board connected to a robot

Sensors Gyro

15 September 2008 22

Gyro
Gyros typically supplied by FIRST in the kit of parts are provided by Analog Devices and are actually

angular rate sensors. The output voltage is proportional to the rate of rotation of the axis normal to the

gyro chip top package surface. The voltage is expressed in mV/°/second (degrees/second or rotation

expressed as a voltage). By integrating (summing) the rate output over time the system can derive the

relative heading of the robot.

Another important specification for the gyro is its full scale range. Gyros with high full scale ranges can

measure fast rotation without “pinning” the output. The scale is much larger so faster rotation rates can

be read, but there is less resolution since a much larger range of values is spread over the same number

of bits of digital to analog input. In selecting a gyro you would ideally pick the one that had a full scale

range that exactly matched the fastest rate of rotation your robot would ever experience. That would

yield the highest accuracy possible, provided the robot never exceeded that range.

Using the Gyro class

The Gyro object is typically created in the constructor of the RobotBase derived object. When the Gyro

object is instantiated it will go through a 1 second calibration period to determine the offset of the rate

output while the robot is at rest. This means that the robot must be stationary while this is happening

and that the gyro is unusable until after it has completed the calibration.

Once initialized, the GetAngle() method of the Gyro object will return the number of degrees of

rotation (heading) as a positive or negative number relative to the robot’s position during the calibration

period. The zero heading can be reset at any time by calling the Reset() method on the Gyro object.

Setting the gyro sensitivity

The Gyro class defaults to the settings required for the 80°/sec gyro that was delivered by FIRST in the

kit of parts last year. As soon as we find out if and what type of gyro will be in the kit this year, the

default will change to match it.

If a different gyro is selected then the Gyro object has to change to match it. To change gyro types call

the SetSensitivity(float sensitivity) method and pass as a parameter the sensitivity in

volts/°/sec. Just be careful since the units are typically mV (volts / 1000) in the spec sheets. A gyro with a

sensitivity of 12.5 mV/°/sec would require a SetSensitivity() parameter value of 0.0125.

Sensors HiTechnicCompass

15 September 2008 23

HiTechnicCompass

Sensors Ultrasonic rangefinder

15 September 2008 24

Ultrasonic rangefinder
The WPI Robotics library supports the common Daventech SRF04 or Vex ultrasonic sensor. This sensor

has a two transducers, a speaker that sends a burst of ultrasonic sound and a microphone that listens

for the sound to be reflected off of a nearby object. It uses two connections to the cRIO, one that

initiates the ping and the other that tells when the sound is received. The Ultrasonic object measures

the time between the transmission and the reception of the echo.

Figure 2: SRF04 Ultrasonic Rangefinder connections

Both the Echo Pulse Output and the Trigger Pulse Input have to be connected to digital I/O ports on a

digital sidecar. When creating the Ultrasonic object, specify which ports it is connect to in the

constructor:

 Ultrasonic ultra(ULTRASONIC_PING, ULTRASONIC_ECHO);

In this case ULTRASONIC_PING and ULTRASONIC_ECHO are two constants that are defined to be the

ports numbers.

Using ultrasonic rangefinders that do not have these connections should not be implemented with the

Ultrasonic class. Instead use the appropriate class for the sensor, for example an AnalogChannel object

for an ultrasonic sensor that returns the range as a voltage.

Sensors Encoders

15 September 2008 25

Encoders
Encoders are devices for measuring the rotation of a spinning shaft. Encoders are typically used to

measure the distance a wheel has turned that can be translated into robot distance across the floor.

Distance moved over a measured period of time represents the speed of the robot and is another

common measurement for encoders. There are several types of encoders supported in WPILib.

Simple encoders

Counter class

Single output encoders that provide a state change as the wheel is

turned. With a single output there is no way of detecting the direction of

rotation. The Innovation First VEX encoder or index outputs of a

quadrature encoder are examples of this type of device.

Quadrature encoders

Encoder class

Quadrature encoders have two outputs typically referred to as the A

channel and the B channel. The B channel is out of phase from the A

channel. By measuring the relationship between the two inputs the

software can determine the direction of rotation.

The system looks for Rising Edge signals (ones where the input is

transitioning from 0 to 1) on the A channel. When a rising edge is

detected on the A channel, the B channel determines the direction. If the

encoder was turning clockwise, the B channel would be a low value and

if the encoder was turning counterclockwise then the B channel would

be a high value. The direction of rotation determines which rising edge

of the A channel is detected, the left edge or the right edge.

Gear tooth sensor

GearTooth class

This is a device supplied by FIRST as part of the FRC robot standard

kit of parts. The gear tooth sensor is designed to monitor the rotation of

a sprocket or gear that is part of a drive system. It uses a Hall-effect

device to sense the teeth of the sprocket as they move past the sensor.

Table 4: Encoder types that are supported by WPILib

These types of encoders are described in the following sections.

Figure 3: Quadrature encoder phase relationships between the two channels.

Sensors Geartooth Sensor

15 September 2008 26

Geartooth Sensor
Gear tooth sensors are designed to be mounted adjacent to spinning ferrous gear or sprocket teeth

and detect whenever a tooth passes. The gear tooth sensor is a Hall-effect device that uses a

magnet and solid state device that can measure changes in the field caused by the passing teeth.

Figure 4: A gear tooth sensor mounted on a VEX robot chassis measuring a metal gear rotation. Notice that there is a

metal gear attached to the plastic gear in this picture. The gear tooth sensor needs a ferrous material passing by it to

detect rotation.

Sensors Quadrature Encoders

15 September 2008 27

Quadrature Encoders
Background Information

Encoders are devices for measuring the rotation of a spinning shaft. Encoders are typically used to

measure the distance a wheel has turned that can be translated into robot distance across the floor.

Distance moved over a measured period of time represents the speed of the robot and is another

common measurement for encoders.

Encoders typically have a rotating disk with slots that spins in front of a photodetector. As the slots

pass the detector, pulses are generated on the output. The rate at which the slots pass the detector

determines the rotational speed of the shaft and the number of slots that have passed the detector

determine the number of rotations (or distance).

Figure 5: A Grayhill quadrature optical encoder. Note the two connectors, one for the A channel and one for the B

channel.

Some quadrature encoders have an extra Index channel. This channel pulses once for each complete

revolution of the encoder shaft. If counting the index channel is required for the application it can be

done by connecting that channel to a simple Counter object which has no direction information.

Quadrature encoders are handled by the Encoder class. Using a quadrature encoder is done by simply

connecting the A and B channels to two digital I/O ports and assigning them in the constructor for

Encoder.

Sensors Quadrature Encoders

15 September 2008 28

 Encoder encoder(1, 2, true);

Where 1 and 2 are the port numbers for the two digital inputs and the true value tells the encoder to

not invert the counting direction. The sensed direction could depend on how the encoder is mounted

relative to the shaft being measured.

Sensors Counter

15 September 2008 29

Counter

Sensors Analog Inputs

15 September 2008 30

Analog Inputs
The Analog to Digital converter system has a number of features not available on simpler controllers. It

will automatically sample the analog channels in a round-robin fashion providing an aggregate sample

rate of 500 ks/s (500,000 samples / second). These channels can be optionally oversampled and

averaged to provide the value that is used by the program. There are raw integer and voltage outputs

available in addition to the averaged values.

The averaged value is computed by summing a specified number of samples and performing a simple

average. The summed value is divided by the number of samples that are in the average. When the

system averages a number of samples the division results in a fractional part of the answer that is lost in

producing the integer valued result. That fraction represents how close the average values were to the

next higher integer. Oversampling is a technique where extra samples are summed, but not divided

down to produce the average. Suppose the system were oversampling by 16 times – that would mean

that the values returned were actually 16 times larger than the average output.

Sensors Digital Inputs

15 September 2008 31

Digital Inputs

Sensors Digital Outputs

15 September 2008 32

Digital Outputs

Controlling Motors Digital Outputs

15 September 2008 33

Controlling Motors
The WPI Robotics library has extensive support for motor control. There are a number of classes that

represent different types of speed controls and servos. The library is designed to support non-PWM

motor controllers that will be available in the future. The WPI Robotics Library currently supports two

classes of speed controllers, PWM-based motors (Jaguars or Victors) and servos.

Motor speed controller values floating point and range from -1.0 to +1.0 where -1.0 is full speed in one

direction, and 1.0 is full speed in the other direction. 0.0 represents stopped. Motors can also be set to

disabled, where the signal is no longer sent to the speed controller.

Controlling Motors PWM

15 September 2008 34

PWM
The PWM class is the base class for devices that operate on PWM signals and is the connection to the

PWM generation hardware in the cRIO. It is not intended to be used directly on a speed controller or

servo. The PWM class has shared code for Victor, Jaguar, and Servo to set the update rate, deadband

elimination, and profile shaping of the output signal.

Controlling Motors Victor

15 September 2008 35

Victor
The Victor class represents the Victor speed controllers provided by Innovation First. They have a

minimum 10ms update rate and only take a PWM control signal.

Controlling Motors Jaguar

15 September 2008 36

Jaguar
The Jaguar class supports the Luminary Micro Jaguar speed controller. It has an update rate of slightly

over 5ms and currently uses only PWM output signals. In the future the more sophisticated Jaguar

speed controllers might have other methods for control of its many extended functions.

The input values for the Jaguar range from -1.0 to 1.0 for full speed in either direction with 0

representing stopped.

Controlling Motors Servo

15 September 2008 37

Servo
The Servo class supports the hitechnic servos supplied by FIRST. They have a 20ms update rate and are

controlled by PWM output signals.

The input values for the Servo range from 0.0 to 1.0 for full rotation in one direction to full rotation in

the opposite direction. There is also a method to set the servo angle based on the (currently) fixed

minimum and maximum angle values.

The following code fragment rotates a servo through its full range in 10 steps:

 Servo servo(3); // create a servo on PWM port 3 on the first module

 float servoRange = servo.GetMaxAngle() - servo.GetMinAngle();

 for (float angle = servo.GetMinAngle(); // step through range of angles

 angle < servo.GetMaxAngle();

 angle += servoRange / 10.0)

 {

 servo.SetAngle(angle); // set servo to angle

 Wait(1000); // wait 1 second

 }

Controlling Motors RobotDrive

15 September 2008 38

RobotDrive
The RobotDrive class is designed to simplify the operation of the drive motors based on a model of the

drive train configuration. The idea is to describe the layout of the motors. Then the class can generate all

the speed values to operate the motors for different situations. For cases that fit the model it provides a

significant simplification to standard driving code. For more complex cases that aren’t directly supported

by the RobotDrive class it may be subclassed to add additional features or not used at all.

To use it, create a RobotDrive object specifying the left and right motors on the robot:

 RobotDrive drive(1, 2); // left, right motors on ports 1,2

Or

 RobotDrive drive(1, 2, 3, 4); // four motor drive case

This sets up the class for a 2 motor configuration or a 4 motor configuration. There are additional

methods that can be called to modify the behavior of the setup.

SetInvertedMotor(kFrontLeftMotor);

This method sets the operation of the front left motor to be inverted. This might be necessary

depending on the gearing of your drive train.

Once set up, there are methods that can help with driving the robot either from the Driver Station

controls or through programmed operation:

Method Description

Drive(speed, turn) Designed to take speed and turn values ranging from -1.0 to 1.0.
The speed values set the robot overall drive speed, positive
values forward and negative values backwards. The turn value
tries to specify constant radius turns for any drive speed. The
negative values represent left turns and the positive values
represent right turns.

TankDrive(leftStick, rightStick) Takes two joysticks and controls the robot with tank steering
using the y-axis of each joystick. There are also methods that
allow you to specify which axis is used from each stick.

ArcadeDrive(stick) Takes a joystick and controls the robot with arcade (single stick)
steering using the y-axis of the joystick for forward/backward
speed and the x-axis of the joystick for turns. There are also
other methods that allow you to specify different joystick axis.

HolonomicDrive(magnitude,
direction, rotation)

Takes floating point values, the first two are a direction vector
the robot should drive in. The third parameter, rotation, is the
independent rate of rotation while the robot is driving. This is
intended for robots with 4 Mecanum wheels independently
controlled.

SetLeftRightMotorSpeeds(leftSpeed,
rightSpeed)

Takes two values for the left and right motor speeds. As with all
the other methods, this will control the motors as defined by the

Controlling Motors RobotDrive

15 September 2008 39

constructor.

The Drive method of the RobotDrive class is designed to support feedback based driving. Suppose you

want the robot to drive in a straight line. There are a number of strategies, but two examples are using

GearTooth sensors or a gyro. In either case an error value is generated that tells how far from straight

the robot is currently tracking. This error value (positive for one direction and negative for the other)

can be scaled and used directly with the turn argument of the Drive method. This causes the robot to

turn back to straight with a correction that is proportional to the error – the larger the error, the greater

the turn.

Controlling Motors Compressor

15 September 2008 40

Compressor
The Compressor class is designed to operate the FRC supplied compressor on the robot. A Compressor

object is constructed with 2 inputs:

 The Spike (relay) port that is controlling the power to the compressor

 The Digital input that the pressure switch is connected to that is monitoring the accumulator

pressure

The Compressor class will automatically create a task that runs in the background twice a second and

turns the compressor on or off based on the pressure switch value. If the system pressure is above the

high set point, the compressor turns off. If the pressure is below the low set point the compressor turns

on.

To use the Compressor class you would typically create an instance of the Compressor object and start it

in the constructor for your Robot Program. Once started, it will continue to run on its own with no

further programming necessary. If you do have an application where the compressor should be turned

off, possibly during some particular phase of the game play, you can stop and restart the compressor

using the Start() and Stop() methods.

The compressor class will create instances of the DigitalInput and Relay objects to read the pressure

switch and operate the Spike. There is no need to do this yourself.

Example

Suppose you had a compressor and a Spike relay connected to Relay port 2 and the pressure switch

connected to digital input port 4. Both of these ports are connected to the primary digital input module.

You could create and start the compressor running in the constructor of your RobotBase derived object

using the following 2 lines of code.

 Compressor *c = new Compressor(4, 2);

 c->Start();

Note: The variable c is a pointer to a compressor object and the

object is allocated using the new operator. If it were allocated as a local

variable in the constructor, at the end of the function the local variables

would be deallocated and the compressor would stop operating.

That’s all that is required to enable the compressor to operate for the duration of the robot program.

Controlling Motors Solenoid (Pneumatics)

15 September 2008 41

Solenoid (Pneumatics)
The Solenoid object controls the outputs of the 9472 Digital Ouput Module. It is designed to apply an

input voltage to any of the 8 outputs. Each output can provide up to 1A of current. The module is

designed to operate 12v pneumatic solenoids used on FIRST robots. This makes the use of relays

unnecessary for pneumatic solenoids.

Note: The 9472 Digital Output Module does not provide enough

current to operate a motor or the compressor so relays connected to

Digital Sidecar digital outputs will still be required for those applications.

The port numbers on the Solenoid class range from 1-8 as printed on the pneumatic bumper breakout

board.

Note: The 9472 indicator lights are numbered 0-7 for the 8 ports

which is different numbering then used by the class or the pneumatic

bumper case silkscreening.

Setting the output values of the Solenoid objects to true or false will turn the outputs on and off

respectively. The following code fragment will create 8 Solenoid objects, initialize each to true (on), then

turn them off, one per second. Then it turns them each back on, one per second, and deletes the

objects.

 Solenoid *s[8];

 for (int i = 0; i < 8; i++)

 s[i] = new Solenoid(i + 1); // allocate the Solenoid objects

 for (int i = 0; i < 8; i++)

 {

 s[i]->Set(true); // turn them all on

 }

 for (int i = 0; i < 8; i++)

 {

 s[i]->Set(false); // turn them each off in turn

 Wait(1000);

 }

 for (int i = 0; i < 8; i++)

 {

 s[i]->Set(true); // turn them back on in turn

 Wait(1000);

 delete s[i]; // delete the objects

 }

You can observe the operation of the Solenoid class by looking at the indicator lights on the 9472

module.

Concurrency Solenoid (Pneumatics)

15 September 2008 42

Concurrency
VxWorks is the operation system that is running inside the cRIO and providing services to the running

robot programs that you write. It provides many operations to support concurrency, or the

simultaneous execution of multiple pieces of the program called tasks. Each task runs is scheduled to

run by VxWorks based on its priority and availability of resources it might be waiting on. For example, if

one task does a Wait(time), then other tasks can run until the time runs out on the waiting task.

WPILib provides some classes to help simplify writing programs that do multitasking. However it should

be stressed that writing multi-tasking code represents one of the most challenging aspects of

programming. It may look simple; but there are many complications that could give your program

unexpected and hard to reproduce errors.

Concurrency Synchronized and Critical Regions

15 September 2008 43

Synchronized and Critical Regions
A critical region is an area of code that is always executed under mutual exclusion, i.e. only one task can

be executing this code at any time. When multiple tasks try to manipulate a single group of shared data

they have to be prevented from executing simultaneously otherwise a race condition is possible.

Imagine two tasks trying to update an array at the same time. Task A reads the count of elements in the

array, then task B changes the count, then task A tries to do something based on the (now incorrect)

value of the count it previously read. This situation is called a race condition and represents one of the

most difficult to find programming bugs since the bug only is visible when the timing of multiple tasks is

just right (or wrong).

Typically semaphores are used to ensure only single task access to the shared data. Semaphores are

operating system structures that control access to a shared resource. VxWorks provides two operations

on semaphores take and give. When you take a semaphore, the code pauses until the semaphore isn’t

in use by another task, then the operating system marks it in use, but your code can now run. You give

the semaphore when you are finished using the shared data. It now lets the next task trying to take the

semaphore run.

Suppose that a function operates on some shared data. Understanding about the bad things that can

happen with race conditions, you take a semaphore at the start of the function and give it at the end.

Now inside the function, the data is protected from inappropriate shared use. Now someone else looks

at the code and decides to change it and puts a return in the middle of the function, not noticing the

take and give. The semaphore is taken, but the corresponding give operation never happened. That

means that any other task waiting on that semaphore will wait forever. This condition is called deadlock.

The Synchronized object is a simple wrapper around semaphores that tries to solve the problem. Here is

an example of how it is used:

{

 Synchronized s(semaphore);

 // access shared code here

 if (condition) return;

 // more code here

}

At the start of the block a Synchronized object is allocated. This takes the semaphore. When the block

exits, the object is freed and its destructor is called. Inside the destructor the semaphore is given. Notice

that the destructor will be called no matter how the block is exited. Even if a return is used inside the

block, the destructor is guaranteed to be called by the C++ compiler. This eliminates a common cause of

deadlock.

To make the code even more readable, there are two macros defined by WPILib and used like this:

Concurrency Synchronized and Critical Regions

15 September 2008 44

CRITICAL_REGION(semaphore)

{

 // access shared code here

 if (condition) return;

 // more code here

}

END_REGION;

These macros just make the code more readable, but the expanded code is identical to the previous

example.

System Architecture Synchronized and Critical Regions

15 September 2008 45

System Architecture
This section describes how the system is put together and how the libraries interact with the base

hardware. It should give you better insight as to how the whole system works and its capabilities.

Note: This is a work in progress, the pictures will be cleaned up and

explanations will be soon added. We wanted to make this available to

you in its raw form rather than leaving it out all together.

System Architecture Digital I/O Subsystem

15 September 2008 46

Digital I/O Subsystem

System Architecture Analog to Digital Converter Subsystem

15 September 2008 47

Analog to Digital Converter Subsystem

Oversample and Average Engine

System Architecture Digital Sources

15 September 2008 48

Digital Sources

Digital Filter

System Architecture Analog Triggers

15 September 2008 49

Analog Triggers

Average Rejection Filter

System Architecture Counters Subsystem

15 September 2008 50

Counters Subsystem

Getting Feedback from the Drivers Station Counters Subsystem

15 September 2008 51

Getting Feedback from the Drivers Station

Getting Feedback from the Drivers Station Joysticks

15 September 2008 52

Joysticks

Getting Feedback from the Drivers Station Driver station analog inputs

15 September 2008 53

Driver station analog inputs

Getting Feedback from the Drivers Station Driver station digital inputs

15 September 2008 54

Driver station digital inputs

Getting Feedback from the Drivers Station Driver station digital outputs

15 September 2008 55

Driver station digital outputs

Advanced Programming Topics Driver station digital outputs

15 September 2008 56

Advanced Programming Topics

Advanced Programming Topics Using Subversion with Workbench

15 September 2008 57

Using Subversion with Workbench
Subversion is a free source code management tool that is designed to track changes to a project as it is

developed. You can save each revision of your code in a repository, go back to a previous revision, and

compare revisions to see what changed. You should install a Subversion client if:

 You need access to the WPI Robotics Library source code installed on a Subversion server

 You have your own Subversion server for working with your team projects

There are a number of clients that will integrate with Workbench, but we’ve been using Subclipse.

Installing the Subclipse client into Workbench

Subclipse can be downloaded from the internet and installed into Workbench. The following instructions

describe how to do it.

On the help menu, select
“Software updates”, then
“Find and Install”.

Select “Search for new
features to install and click
Next.

Advanced Programming Topics Using Subversion with Workbench

15 September 2008 58

Click, “New Remote Site…” to
add the Subclipse update site.

Enter the information for the
update site and click OK.

Advanced Programming Topics Using Subversion with Workbench

15 September 2008 59

Now you should see Subclipse
added to the list of “Sites to
include in search:”. Click
“Finish”.

Select the “JavaHL Adapter”
and “Subclipse” from the list
of features to install.

Advanced Programming Topics Using Subversion with Workbench

15 September 2008 60

Accept the license and click
“Next”.

Click “Finish” and the install
will start. If asked, select
“Install All” in the Verification
window. You should allow
Workbench to restart after
finishing.

Advanced Programming Topics Getting the WPILib Source Code

15 September 2008 61

Getting the WPILib Source Code
The WPI Robotics Library source code is installed on a Subversion server. To get it requires having a

subversion client installed in your copy of Workbench. See Installing the Subclipse client into Workbench

for instructions on how to set it up.

Importing the WPI Robotics Library into your workspace

To get the source code requires setting up a “Repository location” then importing the code. The

following steps show the process.

Right-click in the “Project Explorer” window in
Workbench. Select “Import…”

Choose “Checkout Projects from SVN” and click
next.

Select “Create a new repository location” and
click Next.

Advanced Programming Topics Getting the WPILib Source Code

15 September 2008 62

Enter the URL:
https://sourceforge.wpi.edu/svn/repos/betasour
ce and click “Next”.

Choose the WPILib folder from the “Select
Folder” window. The window on your screen will
have a different list of files, but still choose
WPILib.

https://sourceforge.wpi.edu/svn/repos/betasource
https://sourceforge.wpi.edu/svn/repos/betasource

Advanced Programming Topics Getting the WPILib Source Code

15 September 2008 63

Check out the code as a project in the Workspace
by leaving all the default options and clicking
“Finish”.
If you are asked for a username and password, it
is your username for SourceForge. Checking the
“Remember password” box will make this easier
since it will ask multiple times.

Using the WPI Robotics Library source code in your projects

The sample projects provided by FIRST use a library file (WPILib.a) and header files from the Workbench

install. If you intend to modify or debug the source copy of the library you just imported, the project

settings have to change to refer to that copy of the library instead.

Note: Before doing these steps you must have built the WPILib project once so that the WPILib.a

target file has been generated.

Right-click on the project name in the “Project Explorer” pane in Workbench and select “Properties”.

In the project properties window,
select “Build Properties”. Here you
can see all the options that
Workbench will use to build your
project.

Advanced Programming Topics Getting the WPILib Source Code

15 September 2008 64

Select the “Build Paths” tab to use
the downloaded WPILib include
files to your project rather than
the installed version.

Select the Libraries tab and select
the WPILib.a library file from the
downloaded WPILib project
instead of the version preinstalled
in Workbench.

Note: to build WPILib you must install SlikSVN from

http://www.sliksvn.com/en/download. Once downloaded and installed

the builds will run without errors. SlikSVN is a command line interface to

Subversion that our build system uses for tracking library versions.

http://www.sliksvn.com/en/download

Advanced Programming Topics Getting the WPILib Source Code

15 September 2008 65

Now if you rebuild your project it will use the imported version of the WPI Robotics Library rather than

the preinstalled version.

Advanced Programming Topics Replacing WPI Robotics Library parts

15 September 2008 66

Replacing WPI Robotics Library parts
You can replace any component of the WPI Robotics Library with your own version of that component

without having to replace the entire library. When your projects are built, the last step is Linking. This

two step process creates a single executable .OUT file by:

1. Combining all the modules (object files) from your project together into the .OUT file

2. Finding all the unresolved pieces such as classes referenced from WPILib and adding those

pieces to your .OUT file executable.

Only the pieces of WPILib that are unresolved after step 1 are included from the library and that’s the

key to substituting your own version of classes.

Suppose you want to use your own version of the Encoder class because you had some extra features

you wanted to add. To use your version rather than the WPILib version simply:

1. Get the WPILib version of the file (.cpp and .h) files from the WPILib source code and add them

to your project.

2. Make whatever modifications you would like to.

3. Rebuild your project. The library version of the Encoder objects will be included with your set of

object modules, so the linker won’t take the ones in WPILib.

Advanced Programming Topics Interrupts

15 September 2008 67

Interrupts

Advanced Programming Topics Creating your own speed controllers

15 September 2008 68

Creating your own speed controllers

Advanced Programming Topics PID Programming

15 September 2008 69

PID Programming

Advanced Programming Topics Using the serial port

15 September 2008 70

Using the serial port

Advanced Programming Topics Relays

15 September 2008 71

Relays

Advanced Programming Topics Analog Triggers

15 September 2008 72

Analog Triggers

Advanced Programming Topics Customizing analog sampling

15 September 2008 73

Customizing analog sampling

Advanced Programming Topics Using I2C

15 September 2008 74

Using I2C

Advanced Programming Topics Using DMA for data analysis

15 September 2008 75

Using DMA for data analysis

Using WindRiver WorkBench Using DMA for data analysis

15 September 2008 76

Using WindRiver WorkBench
WindRiver Workbench is a complete C/C++ Interactive Development Environment (IDE) that handles all

aspects of code development. It will help you:

 Write the code for your robot with editors, syntax highlighting, formatting, auto-completion,

etc.

 Compile the source code into binary object code for the cRIO PowerPC architecture.

 Debug and test code by downloading the code to the cRIO robot controller and enabling you to

step through line by line and examine variables of the running code.

 Deploy the program so that it will automatically start up when the robot is powered on.

You can even use Subversion, a popular source code repository server to manage your code and track

changes. This is especially useful if there is more than one person doing software development.

Using WindRiver WorkBench Setting up the environment

15 September 2008 77

Setting up the environment
To use Workbench you need to configure it so that it knows about your robot and the programs that you

want to download to it. There are three areas that need to be set up.

1. The target remote system, which is the cRIO that you will use to download and debug your

programs.

2. The run or debug configuration that describes the program to be debugged and which remote

system you want to debug it on.

3. The FIRST Downloader settings that tell which program should be deployed onto the cRO when

you are ready to load it for a competition or operation without the laptop.

Creating a Remote System in Workbench

Workbench connects to your cRIO controller and can download and remotely debug programs running

on it. In order to make that connection, Workbench needs to add your cRIO to its list of Remote

Systems. Each entry in the list tells Workbench the network address of your cRIO and has a kernel file

that is required for remote access. To create the entry for your system do the following steps.

Right-click in the empty area in the “Remote
Systems” window. Select “New Connection”.

In the “Select Remote System Type” window select
“Wind River VxWorks 6.x Target Server
Connection” and click “Next”.

Using WindRiver WorkBench Setting up the environment

15 September 2008 78

Fill out the “Target Server Options” window with
the IP address of your cRIO. It is usually 10.x.y.2
where x is the first 2 digits of your 4 digit team
number and y is the last two digits. For example,
team 190 (0190) would be 10.1.90.2. You must
also select a Kernel Image file. This is located in the
WindRiver install directory in the WPILib top level
directory. This is typically called
“C:\WindRiver\WPILib\VxWorks”.

If the cRIO is turned on and connected you will see
the target server entry populated with the tasks
currently running.

Creating a Debug Configuration for your project

Workbench has specifications called Run and Debug Configurations that describe which program to

download to the cRIO and how the debugger should connect to it. One must be set up prior to

debugging your new project.

Right-click on the project you wish
to debug in the Project Explorer
window. Select “Debug Kernel
Task…”

Using WindRiver WorkBench Setting up the environment

15 September 2008 79

Fill in the “Main” tab of the “Create,
Manager, and Run Configurations”
window. You should always put
FRC_UserProgram_StartupLibraryIni
t for the entry point. If you browse
in the list of possible entry points it
will be under “Downloads”. The
other entry points refer to code
preloaded into the cRIO. Note: you
will not be able to edit the entry
point unless the cRIO Remote
System is connected to the PC. See
the previous section for details.

In the “Debug Options” tab, be sure
to set “Automatically attach
spawned kernel tasks”. This will
make sure you can debug any tasks
and interrupt handlers that you
might start in your program.

Using WindRiver WorkBench Setting up the environment

15 September 2008 80

In the common tab you can select
“Debug” under the “Display in the
favorites”. This will make it easier to
start your program later using the
debug toolbar item in Workbench.

Then apply the settings.

To download the program in the
cRIO, click the “Debug” button.

Using WindRiver WorkBench Creating a robot project

15 September 2008 81

Creating a robot project
The easiest way to create your own project for your robot is to start with one of the existing templates:

 SimpleRobotTemplate

 IterativeRobotTemplate (coming soon)

In both cases the templates are based on the RobotBase class and have some of the functions

overridden to change the behavior. Additional templates can be implemented that implement other

behaviors for example event driven models.

Follow these steps to create a sample project. In this case the sample is the SimpleRobotTemplate, but

you can use any of the provided samples.

click “File” from the main
menu, then “New”, then
“Example…”. From the
example project window select
“VxWorks Downloadable
Kernel Module Sample
Project”, and then click “Next”.

Using WindRiver WorkBench Creating a robot project

15 September 2008 82

Select Simple Robot Template
from Sample Project Template
window. Notice that a
description of the template is
displayed in the Information
window. Click “Finish” and a
project will be created in your
workspace that you can edit
into your own program.

Using WindRiver WorkBench Building your project

15 September 2008 83

Building your project
The project is built by right-clicking on the project name in the Project Explorer window and select “Build

project” or “Rebuild project” from the popup context menu. This will cause Workbench to compile and

link the project files into a .OUT executable file that may be either deployed or downloaded to the cRIO.

Another way of building the project is to automatic rebuild feature of Workbench. Whenever a file in

the project is saved, a build will automatically be started to keep the project up to date. To enable this

feature:

Select “Window”, then “Preferences”. In the Preferences panel, expand “General”, then “Workspace”

and check the “Build automatically” option. Files can quickly be saved after editing by using the shortcut,

Ctrl-S.

Using WindRiver WorkBench Downloading the project to the cRIO

15 September 2008 84

Downloading the project to the cRIO
There are two ways of getting your project into the cRIO:

1. Using a Run/Debug Configuration in Workbench. This loads the program into the cRIO ram

memory and allows it to run either with or without the debugger. When the robot is rebooted,

the program will no longer be in memory.

2. Deploy the program through the FIRST Downloader option in Workbench. In this case the

program will be written to the flash disk inside the cRIO and will run whenever it is rebooted

until it is Undeployed (deleted from flash). This is the option to take a finished program and

make it available for a match – so that it will run without an attached computer to always load

it.

To deploy the program you must set up the FIRST download preferences.

Description coming soon.

Using WindRiver WorkBench Debugging your robot program

15 September 2008 85

Debugging your robot program
What can you do with the debugger

C++ Tips Debugging your robot program

15 September 2008 86

C++ Tips

Creating an application in WorkBench Debugging your robot program

15 September 2008 87

Creating an application in WorkBench

Using C with the WPI Robotics Library Debugging your robot program

15 September 2008 88

Using C with the WPI Robotics Library

Contributing to the WPI Robotics Library Debugging your robot program

15 September 2008 89

Contributing to the WPI Robotics Library

Glossary Debugging your robot program

15 September 2008 90

Glossary
Concurrency

cRIO

deadlock

quadrature encoder

semaphore

task

VxWorks

